Efficient Parallel Construction of Suffix Trees for Genomes
Larger than Main Memory

. *
Matteo Comin
Department of Information Engineering
University of Padova, Italy

comin@dei.unipd.it

ABSTRACT

The construction of suffix tree for very long sequences is
essential for many applications, and it plays a central role
in the bioinformatic domain. With the advent of modern
sequencing technologies, biological sequence databases have
grown dramatically. Also the methodologies required to an-
alyze these data have become everyday more complex, re-
quiring fast queries to multiple genomes. In this paper we
presented Parallel Continuous Flow PCF, a parallel suf-
fix tree construction method that is suitable for very long
strings. We tested our method on the construction of suffix
tree of the entire human genome, about 3GB. We showed
that PC'F can scale gracefully as the size of the input string
grows. Our method can work with an efficiency of 90% with
36 processors and 55% with 172 processors. We can index
the Human genome in 7 minutes using 172 nodes.

Keywords
Suffix Tree; Parallel Algorithms; Whole Genome Indexing

1. INTRODUCTION

The increasing availability of biological sequences, from
proteins to entire genomes, poses the need for the automatic
analysis and classification of such a huge collection of data.
The size of the entire Human genome is in the order of 3
Billion DNA base pairs, whereas other genomes can be as
long as 16 Gbp. In this scenario one of the most impor-
tant needs is the design of efficient techniques to store and
query biological data. The most common full-text indexes
are suffix trees [21], suffix arrays [19].

Traditionally the suffix tree has been used in very different
fields, spanning from data compression [3, 4] to clustering
and classification [10, 12, 11]. The use of suffix tree has
become very popular in the field of bioinformatics allowing
a number of string operations, like detection of repeats [17],

*Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EUROMPI *13, September 15 - 18 2013, Madrid, Spain

Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.

211

Montse Farreras
Barcelona Supercomputing Center
UPC BarcelonaTech
Barcelona, Spain

mfarrera@ac.upc.edu

local alignment [23], the discovery of regulatory elements
[8, 9] and extensible patterns [5]. The optimal construction
of suffix tree has already been addressed by [27, 22], that
provided algorithms in linear time and space. The main
issue is that the suffix tree can easily exceeds the memory
available, as the input sequence grows.

In recent years researchers have tried to remove this bot-
tleneck by proposing disk-based suffix tree construction algo-
rithms [16], TDD [25], ST-Merge [26] and Trellis [24]. How-
ever only recently two methods to construct a suffix tree for
input larger than the main memory have been proposed:
wavefront [14] and B2ST [7]. In particular the latter is the
first method that is not based on the construction of sub-
trees, but it uses suffix arrays. The suffix array of a string S
is tightly related to the suffix tree of S. It has been proved
that it can be translated into a suffix tree in optimal linear
time [13]. The main advantage of using suffix arrays is that
the memory occupancy is much smaller than that of suffix
trees.

The current massively parallel systems have a small amount
of memory per processing element, and in the future, with
clusters of GPUs, the available main memory per process-
ing element will become even smaller. Our algorithm, Par-
allel Continuous Flow, is conceived such that every node
can process more data than its available memory, and this
will comply with the massively parallel system used in this
study, MareNostrum [1]. The rest of the paper is organized
as follows. In the next section we review the other suffix tree
construction methods, we discuss our parallel method in sec-
tion 2 and we conclude with an experimental evaluation of
the proposed algorithm in section 3.

1.1 Preliminaries on Suffix tree

Let denote X as a set of characters. Let S = so, s1,..., sn-19,
with s; € 3, denote an input string of length N, where
$ ¢ X. By S; we denoted the ¢ suffix of S, that is the sub-
string s;, Si+1,...,5n-1,8. The suffix tree for S is a data
structure organized as a tree that stores all the suffixes of
S. In a suffix tree all paths going from the root node to the
leaf nodes spell a suffix of S. The terminal character $ is
unique and ensures that no suffix is a proper prefix of any
other suffix. Therefore, the number of leaves is exactly the
number of suffixes. All edges spell non-empty strings and
all internal nodes, except the root node, have at least 2 chil-
dren. Moreover there are at most N —1 internal nodes in the
tree. These ensures that the total number of nodes in the
suffix tree is linear in the length N. Hence, the maximum
number of nodes and edges are linear in N.

The optimal construction of suffix tree has been addressed
by Ukkonen[27] and McCreight [22]. These methods perform
very well as long as the input string and the resulting suffix
tree fit in main memory. For a string S of size N, the time
and space complexity are O(N), which is optimal. However,
these optimal algorithms suffer from poor locality of refer-
ence. Once the suffix tree cannot fit in the main memory,
these algorithms require expensive random disk I/Os. If we
consider that the suffix tree is an order of magnitude larger
than the input string, these methods become immediately
unpractical.

1.2 Construction in External memory

To address this issue several methods have been proposed
over the years. In general they all solve this problem by
decomposing the suffix tree into smaller sub-trees stored on
the disk. Among the most important work we can cite [16],
TDD [25], ST-Merge [26] and Trellis [24]. TDD and ST-
merge partition the input string into k blocks of size N/k.
For all partitions a sub-tree is built. A final stage merges the
sub-trees into a suffix tree. This phase needs to access the in-
put string in a nearly-random fashion. ST-Merge improved
the merge phase of TDD by computing the LC'P (Longest
Common Prefix) between two consecutive suffixes. In Trellis
the authors proposed an alternative way to merge the data.
Sub-trees that share a common prefix are merged together.
However this requires the input string to fits the main mem-
ory otherwise the performance drops dramatically. Only
recently two methods solved this issue, Wavefront[14] and
B2ST [7]. The first will be reviewed in the next subsection.
The latter is one of the best performing methods and it will
be described in Section 2.

1.3 Parallel methods

The parallel construction of suffix tree on various abstract
machines is a well studied topic [6, 15]. Similarly to the op-
timal serial algorithm, these methods exhibit poor locality
of references. This problem has been addressed by Farach-
Colton et al. [13] that provide a theoretically optimal algo-
rithm. However, due to the intricacy of the method, it does
not exist a practical implementation of this algorithm. The
only practical parallel implementations of suffix tree con-
struction are Wavefront[14] and ERa[20]. Wavefront splits
the sequence S into independent partitions of the resulting
tree. The partition phase is done using variable length pre-
fixes, so that every partition starts with the same prefix.
This ensures the independence of the sub-trees that can be
easily merged. To reduce the cost of expensive I/O, Wave-
front reads the string sequentially. However the cost of par-
titioning the string into optimal sub-trees can be very high.
Wavefront runs on IBM BlueGene/L supercomputer and it
can index the entire human genome in 15 minutes using 1024
processors. So far this is the best time for a large parallel
system. Unfortunately due to IBM policy the code is not
available. Similarly to wavefront, ERa [20] divides the string
first vertically to construct independent sub-trees. Sub-trees
are then divided horizontally into partitions, such that each
partition can be processed in memory. In the result section
we will review the performance of these two methods.

2. OUR METHOD: PARALLEL CONTINU-
OUS FLOW

212

In this section we present our parallel suffix tree construc-
tion algorithm called Parallel Continuous Flow (PCF). We
describe how we redesigned the best serial method to con-
struct suffix tree for very large input in external memory
B?ST [7], to achieve better performance on a massively par-
allel system like MareNostrum.

2.1 Description of B2ST

The basic idea is that the suffix tree of S can be con-
structed from the suffix array of S and an additional struc-
ture that stores the LC'P (Longest Common Prefix). It has
been shown by [13] that the conversion from Suffix Array to
Suffix Tree can be performed in linear time. This translation
can be implemented efficiently also for large strings because
it exhibits good locality of references. B2ST divides the in-
put string into k partitions of equal size N/k. The size of the
partitions depends on the memory available and for whole
genomes in a serial environment the number of partitions is
typically in the range [3,6]. At the end of each partition,
except the last one, it is attached a tail that is the prefix
of the next partition. This tail must never occur within the
partition and it is required to compute the order of the suf-
fixes within a partition. For example in Table 1 the string
S = ababaaabbabbbab is divided into three partitions of size
5. The first partition is composed by the string ababa fol-
lowed by the tail aa. The substring aa is the shortest prefix
of the second partition that does not occur in the first one.
This will allow to order each suffix for each partition. The
suffix arrays, SA;, of each partitions 7 are shown in the last
row of Table 1.

Partition A
S a b a b
pos 1 2 3 4
SA 5 3 1 4

Partition B Partition C

a a b b a b b b a b

1 2 3 4 5 1 2 3 4 5
4

1 2 5 3 4 5 3 2 1

| oo

Table 1: An example of partitions of size 5 for the
input string S = ababaaabbabbbab. The first partition
is ababa followed by the tail aa that does not occur
within the partition. In the last row there are the
suffix arrays, SA, for each partition.

Next, we need to establish the relative order of all suffixes.
Instead of using the input string we can achieve the same
result by ordering the suffix arrays. Thus in this second
step we generate the suffix arrays SA;; for each pairs of
partitions, along with the LC'P length for each suffix. The
LCP is the length of the longest common prefix of each
suffix in SA;; with its predecessor and it will be used in the
final merge phase. In Table 2 the first two partitions, A and
B, from the previous example are combined. This generates
the suffix array SAap of size |SAa| + |SAg| = 10, and
two other data structures: the LC' P array and the partition
array. The output of this step is the order array OAap that
is composed by the arrays LCP and partition.

After the second step we have produced k suffix arrays
SA;, one per partition, of total size N and k * (k — 1)/2
order arrays OA;; of total size kN. This is the data that will
be used for the final merge. To establish the relative order
of two suffixes it is enough to reuse the information stored
into the order array OA;;. At the general step we need
to find the suffix that is lexicographically smaller among
the suffixes stored into the SA;, but since the suffix arrays
SA; are already ordered we need to compare only the top
elements for each SA;.

Suffix Start | 5 | 1 [3|1 |2 |5 (4|2 |4]|3
Partition A|IB|A|A|B|B|A|A|B|B
LCP o213 |2|3|]0]2]3]1

Table 2: An example of suffix arrays of the pair of
partitions A and B. The first two rows represent the
suffix array SA4p, where the first row is the position
of the suffix within the partition and the second row
identify the partition. The last row is the length of
the LCP between two consecutive suffixes.

2.2 Parallel Continuous Flow: design

In order to parallelize the above process we need to care-
fully analyze the data dependencies. A summary of the data
flow can be found in Figure 1. As already observed the
number of partitions pairs grows like k(k —1)/2 whereas the
overall data grows like kN. If we analyze the performance
reported in [7] we found that the suffix tree construction
for the human genome requires about 3 hours on a modern
workstation. The most demanding task is the construction
of the ordered arrays OA;; that accounts for 95% of the
time.

Input String

Partitions

Type I [k processors]
Suffix Array
of each
Partition

Type Il [k*(k-1)/2 processors]
Order Suffix
Array for each
pairs of
Partitions

Type lll [1 processor]

Suffix Tree

Figure 1: A workflow of the data dependencies of
the approach B2ST.

Another aspect that we need to take into consideration is
the order by which the data is needed at each phase. As al-
ready discussed all steps will process the data sequentially,
in a predetermined, ordered sequence. To distribute the
workload evenly, we reserve one processor for each of the
most demanding tasks. We choose to allocate k % (k — 1)/2
processors to construct the ordered array OA;;. Thus each
of this processors will compute one order array. We decide
to allocate an additional k& processors that are dedicated to
the construction of suffix arrays SA;. Similarly one more
processor will collect the ordered array and merge the par-
tial results into the final suffix tree. To summarize if & is the
number of partitions our algorithm will use kx(k—1)/2+k+1
processors. We will call the processors that compute the suf-
fix arrays SA;, type I; those that construct the ordered ar-
rays OA;j, type II; and the processor that merges the partial
results into the suffix tree, type II1.

To achieve better scalability we need to make sure that
every processor receives a continuous flow of data. This
flow should be adequate to maintain active the computa-

213

tion of all processors. Moreover, we implement all com-
munications with asynchronous non-blocking primitives, like
MPI_iSEND, to overlap communication and computation,
so that every processors can continue the computation while
the network is taking care of the data transfer. This requires
also a series of buffers to store the in-flight temporary data,
data which has already been sent but it has not arrived at
destination.

2.3 Parallel Continuous Flow: implementation

Next we describe in more details the main algorithm and
the different types of processors.

Main algorithm: The main algorithm divides the pro-
cessors in different types and calls the appropriate proce-
dures. It also prepares the partitions of S for type I proces-
sors. The string S is read collectively by all type I proces-
sors. The use of MPI’s collective I/O primitives allows to
achieve better performance, especially when the input string
is large, while ensuring that the same copy of the string is
not read multiple times.

Type I Processor: This processors constructs the suffix
array SA; for the partition 4. The input is the ‘" parti-
tion of S. The output SA; will be computed and stored
incrementally into the sub-suffix array SubSA;. There are
several tools available to construct suffix arrays, we choose
one of the best performing methods developed by Larsson
and Sadakane [18]. When a new suffix is ordered it is in-
serted into SubSA;, until it reaches buffSize. The sub-suffix
array SubSA; will contain a portion of SA; of fixed size
buffSize. Every time SubSA; is full it will be sent to type
IT and III processors using non-blocking MPI_iSEND, this
will allow the type I processor to continue the computation
while the network will take care of the message. In order
to implement this paradigm we need to store the in-flight
messages in a temporary buffer. The number of in-flight
messages may affect the overall performance. For this rea-
son we allocate MemForComm bytes for the communication
buffer. This temporary buffer will contain several messages
of size buffSize.

Type II Processor: The type II processors will take as
input the sub-suffix arrays SubSA; and SubSA; and build
the ordered array OA;;. Consistently with the type I they
will receive the sub-suffix arrays into messages of size buffSize.
Once both sub-suffix arrays are received it is possible to
compute the first portion (of buffSize bytes) of the ordered
array called subOA;;. Similarly with the type I processors
the data is kept into a temporary buffer and sent to type 111
using non-blocking MPI_iSEND primitives. In this case we
don’t need to store several messages because the only node
that will need this data is type III. The construction of the
ordered arrays consumes the input sub-suffix arrays. Every
time one of the two input arrays is empty we will require
more data from the corresponding type I processor.

Type III Processor: The type III processor will merge
the data and produce the suffix tree. The main task is to
order all suffixes so that we can incrementally construct the
suffix tree from the ordered list of suffixes. In order to do
that we need to compare the suffixes in all arrays SA;. Since
these arrays are already ordered this processor can start as
soon as the first subSA; are produced by all type I pro-
cessors. For this reason we allocate the space to receive k
subSA; of dimension buffSize. Similarly we do the same for
all k % (k — 1) sub-ordered arrays subOA;;. Now given all

these data we can efficiently search for the smallest suffix
among the top elements in subSA;. Every time we compare
two suffixes, if they are within the same partition since they
are already ordered we can output the relative order. On
the other hand say one is from SubSA; and the other from
SubSAj, it is enough to check the top element in the order
array subOA;; and output the suffix encoded in the partition
vector. Every time a new smallest suffix is discovered it is in-
serted into the final output buffer subST. This buffer of size
OutputBuffSize contains the partial suffix tree constructed
so far, when it is full it is empty to the disk. Once a new suf-
fix, from partition partld, is discovered we need to advance
a pointer in the corresponding subSApqrtrqa. Similarly also
for all k—1 subOA; partra that involve the partition partld.
If one of these pointers reach the end of the corresponding
array we refill it with a new M PI_Recv, until no more data
is available.

2.4 Workflow Analysis and Complexity

To better highlight the properties of our parallel algorithm
PCF in Figure 2 a workflow is presented. In this diagram
we can see the different types of processors along with the
data they produce. For type I and II processors every chunk
of data represents buffSize bytes, whereas the data chunks of
type III processor are of size QutputBuffSize. In this figure
we can appreciate how the different processors cooperate to
the suffix tree construction.

Procs /;J

Pos SN A O O O A
Pk+1 OAp;
Ei(OAy

Py

|M Shy

Po T ——
: Typel - Typell

[Typem Time

Figure 2: A workflow of our parallel algorithm PCF.

The construction of suffix array takes O(N) time in total
for the k partitions. In our parallel algorithm this phase
is computed by k type I processors, thus the complexity is
O(N/k). Similarly the kx (k —1)/2 order array can be built
in total time of O(kN), again linearly in the input data.
This is in practice the most demanding task that accounts
for 95% of the total serial time. The k % (k — 1)/2 type 11
processors in O(N/k) time construct all order arrays. The
worst case complexity of these two phases is O(N/k), but
the number of processors P = k * (k — 1)/2 + k + 1 scales
like O(k?), thus overall the complexity is O(N/v/P). This
worst case complexity is similar to that of other algorithms
like [14] and [20]. It is worth to note that although the
worst case complexity does not scales linearly with P, in
real applications the construction time scales almost linearly
with the number of processors. This relates to the fact that
the depth of a suffix tree is in the worst case O(N), whereas,
for real data like genomes it can be only O(log N).

214

3. EXPERIMENTAL EVALUATION

This section presents the results of our performance evalu-
ation. All the experiments were conducted in the MareNos-
trum supercomputer [1]. MareNostrum is a cluster of 2560
JS21 blades, each of them equipped with two dual-core IBM
PPC 970-MP processors which share 8 GBytes of main mem-
ory. Our method called Parallel Continuous Flow PCF is
implemented in C' + + using MPI primitives for communi-
cation.

3.1 Fine tuning/Memory

As detailed in the previous section our parallel algorithm
includes as parameters the sizes of two buffers. The first
one, BuffSize, controls the size of messages that are be-
ing exchanged, the second, OutputBufferSize, determines
the output file size. We analyzed the best configuration
while varying these parameters. In Figure 3 we report the
times to construct the suffix tree of a string of 500Mb, drawn
from the Human Genome, using 37 processors (8 partitions).
In general if the size of messages is small the communi-
cation overhead degradates the performance. Similarly if
the output buffer is too small it increases the frequency of
disk writings and reduces the efficiency. However, bigger
buffer sizes results in less frequent communication which
may limit the continuous flow of data and hinder load bal-
ancing, therefore reducing the overall parallelism of the ap-
plication. We tested several configurations of these param-
eters and after an extensive comparison we found that mes-
sages of size 5MB to 10MB and an output buffer of size
75MB to 100MB are in general the best choice. These set-
tings are the best performing also for longer inputs (data
not shown). Based on these observations we set Buf fSize
to 10MB and OutputBuf ferSize of size 100MB.

OutputBufferSize >

Figure 3: Construction times for a 500MB input
with 37 processors (8 partitions) while varying the
parameters BuffSize and OutputBuf ferSize.

3.2 Results

We measure execution time for three different data sets
of different sizes, all data sets are drawn from the Human
genome [2]. We used 43 nodes (172 cores) for our experi-
ments. Each experiment was run 6 times, and the average
value was taken. Unfortunately MareNostrum has been re-
cently disassembled and it is no longer available. Moreover
the code of Wavefront was not available due to IBM policy
and the method ERa was only recently published. To this

end we compare our methods using only the information
available from other papers.

For each different data set, we study different allocations
for the memory budget - 60D /40C indicates that 60% of the
memory budget is reserved for the application data, while the
remaining 40% is used for internal communication buffers.
Figures 4 and 5 illustrates that the optimal combination is
60D/40C. A similar results is obtained also for the other
dataset (figure not shown). Less memory used in com-
munication buffers means less exploitation of the applica-
tion parallelism and the application becomes communication
bounded, however if more memory is used in communication
buffers the application becomes computation bounded. The
measurements show that our algorithm scales up to a certain
threshold for every size of the data set. The small size data
set (500Mb) scales up to 46 threads, up to 106 threads for
medium size (1000Mb) (Figure not shown) and up to 172
for the Whole Human genome (3000Mb)(Figure 5). We at-
tribute this scalability threshold to the fact of reaching the
inherent parallelism limit of the application.

14000 12
—4—60D/40C

12000

=-30D/20C

%

10000 3
m " \\ 40D/60C | 08
@ s —
— ‘ \ \(\jEfﬁmency_ 06
] > 2
£ 6000 —
= o4
- 4000

2000 r 02

0 — L > 0
0 10 20 30 40 50

Processors

Figure 4: Execution times for different memory allo-
cations and efficiency for the best memory allocation
(60D/40C) as we increase the number of processors
- dataset Human genome of size 500MB.

20000 12

18000 ﬁ& ——60D740C
16000

~@-80D/20C 1

\ X\ 40D/60C
14000

= Efficiency 08
12000
10000

8000

Time (sec)

4000

2000

Processors

Figure 5: Execution times for different memory allo-
cations and efficiency for the best memory allocation
(60D/40C) as we increase the number of processors
- dataset whole Human genome 3GB.

We define the efficiency as: Efficiency = SU/MAXSU
where SU is the actual speedup and MAXSU is the max-

215

0 30 150 200

100
Processors

Figure 6: Weak scalability as we increase the in-
put size from 50MB for 3 threads to 3GB for 172
threads.

imum speedup. Since big data sets do not run on a single
thread due to memory limitations, we take into account the
smallest configuration that is possible to run to compute SU
and MAXS. This is the run with 3 processes for the Whole
Human Genome. Thus in this case the efficiency with p pro-
cessors is Ef ficiency = %, where PCF(p) is
the construction time with p nodes. The efficiency is close
to 90% for small configurations (up to 36 processes for the
Whole Human Genome) and it is slightly decreasing as we
scale up, due to the parallelization overhead, until it reaches
the point where it starts degrading due to the inherent limit
of parallelization in the application. For 172 threads we get
55% efficiency (see Figure 5). Similar results are obtained
also for the other dataset (Figure 4). We argue that the
efficiency is relatively good, given the 1/O intensive nature
of the suffix tree construction. For example the efficiency
of ERa [20] drops very quickly and the best performance
reported an efficiency of 53%, but with just 16 processors.

In the last experiment we test the weak scalability, where
the ratio between the size of the input and the number
of nodes is constant. We vary the input from 50MB for
3 threads to 3GB for 172 threads. In the ideal case the
construction time should remain constant, however no algo-
rithm for this problem reaches this theoretical limit. Fig-
ure 6 show that the construction time of PCF' increases
linearly with the number of processors. In the same test the
performance of WaveFront grows more than linearly. Only
ERa has a similar behavior, but with a steeper inclination
(see figure 13 of [20]). This is very important for real appli-
cations, when the input strings can be very long.

PCF constructs the whole Human genome suffix tree in
425 seconds, about 7 minutes, and uses 172 processes in
our testing platform. We argue that this is a very good
performance comparing with the bibliography, in [14] a time
of 880 seconds, 15 minutes, is reported but it requires Blue
Gene/L and 1024 processes, similarly in [20] a time of 11,3
minutes is reported with a much recent hardware. However
these are absolute times on different platform and thus can
not be directly compared.

4. CONCLUSION

The construction of suffix tree for very long sequences is
essential for many applications, and it plays a central role in
the bioinformatic domain. With the advancing of sequenc-
ing technologies the amount of biological sequences available
in genome and proteome databases has grown dramatically.
Therefore it is essential to have fast method to build suffix

trees. In this paper we presented PCF, parallel continuous
flow a parallel suffix tree construction method that is suit-
able for very long strings. We tested our method for the
suffix tree construction of the entire human genome, about
3GB. We showed that PCF' can scale gracefully as the size
of the input string grows. Our method can work with an
efficiency of 90% with 36 processors and 55% with 172 pro-
cessors. We can index the entire Human genome in 7 min-
utes using 172 nodes. To be best of our knowledge this is
the fastest existing method in terms of absolute time.

S. ACKNOWLEDGMENTS

Many thanks to the BSC for the generous availability of
MareNostrum. Work done by M.C. thanks to the HPC-
Europa program and the Ateneo Project of the University
of Padova. The researchers at BSC-UPC are supported by
the Spanish Ministry of Science and Innovation (contract no.
TIN2007-60625 and CSD2007-00050). We’d like to thank
also Gabor Dozsa for helpful discussions.

6. REFERENCES

[1] Bsc: Barcelona supercomputing center, marenostrum
system architecture. http://www.bsc.es.

[2] Complete human genome from ncbi public collections
of dna and rna sequences. ftp://ftp.ncbi.nlm.nih.
gov/genomes/H_sapiens/Assembled_chromosomes/.

[3] A. Apostolico, M. Comin, and L. Parida. Bridging
lossy and lossless compression by motif pattern
discovery. In General Theory of Information Transfer
and Combinatorics, Lecture Notes in Computer
Science, volume 4123, pages 793-813, 2006.

[4] A. Apostolico, M. Comin, and L. Parida. Mining,
compressing and classifying with extensible motifs.
Algorithms for Molecular Biology, 1(4), 2006.

[5] A. Apostolico, M. Comin, and L. Parida. Varun:
Discovering extensible motifs under saturation
constraints. IEEE/ACM Transactions on
Computational Biology and Bioinformatics,
7(4):752-762, October-December 2010.

[6] A. Apostolico, C. Iliopulos, G. Landau, B. Schieber,
and U. Vishkin. Parallel construction of a suffix tree
with applications. Algorithmica, 1(4), 1988.

[7] M. Barsky, U. Stege, and A. Thomo. Suffix trees for
inputs larger than main memory. Information
Systems, 36(3):644 — 654, 2011.

[8] M. Comin and L. Parida. Subtle motif discovery for
the detection of dna regulatory sites. In Proceeding of
Asia-Pacific Bioinformatics Conference, pages 27-36,
2007.

[9] M. Comin and L. Parida. Detection of subtle
variations as consensus motifs. Theoretical Computer
Science, 395(2-3):158-170, 2008.

[10] M. Comin and D. Verzotto. The irredundant class
method for remote homology detection of protein
sequences. Journal of Computational Biology,
18(12):1819-1829, December 2011.

[11] M. Comin and D. Verzotto. Alignment-free phylogeny
of whole genomes using underlying subwords.
Algorithms for Molecular Biology, 7(34), 2012.

[12] M. Comin and D. Verzotto. Whole-genome phylogeny
by virtue of unic subwords. In Proceedings of 25rd

216

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

24]

(25]

(26]

27]

International Workshop on Database and FExpert
Systems Applications, BIOKDD, pages 190-194, 2012.
M. Farach-Colton, P. Ferragina, and

S. Muthukrishnan. On the sorting-complexity of suffix
tree construction. Journal of the ACM 2000,
47(6):987-1011, 2000.

A. Ghoting and K. Makarychev. Indexing genomic
sequences on the ibm blue gene. In Proceedings of
Conference on High Performance Computing
Networking, Storage and Analysis (SC), pages 1-11,
2009.

R. Hariharan. Optimal parallel suffix tree
construction. In Proceedings of the Symposium on
Theory of Computing, pages 290-299, 1994.

E. Hunt, M. P. Atkinson, and R. W. Irving. Database
indexing for large dna and protein sequence
collections. The VLDB Journal, 11:256-271, 2002.

S. Kurtz, J. Choudhuri, E. Ohlebusch,

C. Schleiermacher, J. Stoye, and R. Giegerich.
Reputer: The manifold applications of repeat analysis
on a genome scale. Nucleic Acids Res.,
29(22):4633-4642, 2001.

N. J. Larsson and K. Sadakane. Faster suffix sorting.
Theor. Comput. Sci., 387(3):258-272, 2007.

U. Manber and E. Myers. Suffix arrays: A new
method for on-line string searches. SIAM Journal of
Computing, 22(5):935-948, 1993.

E. Mansour, A. Allam, S. Skiadopoulos, and P. Kalnis.
Era: Efficient serial and parallel suffix tree
construction for very long strings. Proceedings of the
VLDB Endowment, 5(1):49-60, September 2011.

E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM,
23(1):262-272, 1976.

E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of ACM, 23:262-272,
1976.

C. Meek, J. Patel, and S. Kasetty. Oasis: An online
and accurate technique for local-alignment searches on
biological sequences. In Proceedings of 29th
International Conference on Very Large Databases,
pages 910-921, 2003.

B. Phoophakdee and M. J. Zaki. Genome-scale
disk-based suffix tree indexing. In Proc. of ACM
SIGMOD, pages 833-844, 2007.

S. Tata, R. A. Hankins, and J. M. Patel. Practical
suffix tree construction. In Proc. of VLDB, pages
36-47, 2004.

Y. Tian, S. Tata, R. A. Hankins, and J. M. Patel.
Practical methods for constructing suffix trees. The
VLDB Journal, 14(3):281-299, 2005.

E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249-260, 1995.

